Matrix element interference in N -patch functional renormalization group
نویسندگان
چکیده
منابع مشابه
Large N Renormalization Group for Random Matrix Models
We report on our recent studies of the large N renormalization group (RG) method which clariies phase structure of random matrix models. We derive an exact RG equation which enables us to obtain the exact locations of xed points and their scaling exponents. The classiication of phases is given by this analysis. A linear approximation visualizes the RG ow of crossover phenomena including several...
متن کاملCluster Functional Renormalization Group
Functional renormalization group (FRG) has become a diverse and powerful tool to derive effective low-energy scattering vertices of interacting many-body systems. Starting from a non-interacting expansion point of the action, the flow of the RG parameter Λ allows to trace the evolution of the effective one-particle and two-particle vertices towards low energies by taking into account the vertex...
متن کاملDynamical density-matrix renormalization group
The dynamical density-matrix renormalization group (DDMRG) method is a numerical technique for calculating the zero-temperature dynamical properties in low-dimensional quantum many-body systems. For the onedimensional Hubbard model and its extensions, DDMRG allows for accurate calculations of these properties for lattices with hundreds of sites and particles and for any excitation energy. The k...
متن کاملDensity-matrix renormalization group algorithms
The Density Matrix Renormalization Group (DMRG) was developed by White [1, 2] in 1992 to overcome the problems arising in the application of real-space renormalization groups to quantum lattice many-body systems in solid-state physics. Since then the approach has been extended to a great variety of problems in all fields of physics and even in quantum chemistry. The numerous applications of DMR...
متن کاملThe density-matrix renormalization group
The density-matrix renormalization group sDMRGd is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription. This algorithm has achieved unprecedented precision in the description of one-dimensional quantum systems. It has therefore quickly become the method of choice for nume...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2019
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.99.085119